Purpose of the flight and payload description

The Stratoscope II system was one of the most sophisticated balloon-borne telescope systems ever flown. It's goal was to photograph planets and stellar nebulae from Earth's stratosphere with previously unseen precision in an effort that can be viewed in perspective as a distant precursor to the Hubble Space Telescope. The project was under the direction of Princeton University, and was sponsored by the National Science Foundation (NSF), the Office of Naval Research (ONR) and counted with additional support from the National Aeronautics and Space Administration (NASA). The main contract for the construction of the telescope was awarded to the Perkin-Elmer Corporation from Norwalk, Connecticut while Vitro Laboratories from Silver Spring, Maryland served as program manager and supervised the development of the balloon system, the launching and recovery techniques, and planned and conducted the flights.


At left we can see a basic scheme of the telescope as deployed in-flight (click to enlarge) and the configuration of the double-balloon tandem system (more details below). The assembly consisted of an 18-foot main tube and an 11-foot side arm which together formed a fixed L-shaped structure. The basic telescope was housed in the main tube with the objective mirror, the secondary mirror, which was also the focusing element, and a television camera with a 10º field, used to locate the general section of the sky to be studied. The side arm assembly housed the guidance package, camera equipment, and another television camera, this one with a 1º field, which looked through the reflecting telescope and fixed the specific celestial object to be photographed. At it's core was a 36-inch diameter optical mirror fabricated by the Corning Glass Works from New York. Fused silica was choosen as material for the mirror because it was unaffected by the sharp changes in temperature the telescope experienced in flight. That was the first time a fused-silica blank of that size was successfully formed and with high accuracy to a true parabolic shape.

The L-section, weighing 5.500 pounds, was supported by the "knuckle" which contained the drives and the axes that allowed the telescope to point higher or lower in the sky (elevation) and to rotate along the axis of its tube (roll). The L-section and knuckle were supported by the azimuth bearing, which allowed freedom to turn around the vertical axis (azimuth). The telescope was moved to any required elevation angle by a motor-gear drive, but during tracking operated within the freedom of +50 flexure bearings in both roll and elevation. The azimuth bearing was a mercury-floated type wherein the telescope was floated by the buoyant force of a pool of mercury. The telescope tube was locked vertically against the azimuth frame during launch. After deployment, it had a viewing range extending from 70º down to 20º above the horizontal over an azimuth of 360º. A 14-foot diameter inertia ring was fastened to the top half of the azimuth frame. That ring supported the batteries which powered the instrument, ballast containers, provided the counter-inertia in azimuth and finally served to absorb part of the shock of landing at the end of the flight.

A fully instrumented mobile ground control van was located strategically in advance of each mission to remain within the coverage range across the balloon's flight path. From that van astronomers operated the telescope almost in real time through a specially built command and telemetry system with 40 and 64 channels respectively which permited many functions of the telescope and related equipment to be controlled remotely. Two complete radio links were employed to carry out command activities, the channels being divided equally between them. If one link failed, commands normally carried by it could be switched to the other link. The ''eyes" of the ground team were a remote-control television system, and a high-resolution image orthicon tube developed by the RCA Laboratories, Princeton, New Jersey. To acquire the target image, the coarse and fine television screens were used to find a pre-selected guide star. The fine guidance system consisted of lenses within the telescope which moved the image for precision tracking. The image was split between the recording camera and the four tracking eyes. The eyes provided lock-on to two guide stars to provide stabilization in two axes. All exposures obtained during the observational run were recorded on 70-mm film and stored in the camera magazine which was recovered after the telescope returned to the ground.


In planning Stratoscope II, one of the prime considerations was to construct a balloon strong enough to lift such a heavy weight to the required altitude of 80,000 feet. Polyethylene film, commonly used for balloons, was then limited to a load-carrying capacity of about 4,000 pounds, and thus was unsatisfactory for the project. To meet this problem, the G.T. Schjeldahl Company of Northfield, Minnesota under contract to ONR, developed a reinforced laminated plastic film having high tensile strength and tear resistance. Schjeldahl also developed, a new balloon system capable of lifting the heavy telescope payload off the ground quickly while remaining unbuffeted by ground winds as high as 15 knots. The system employed two balloons -a small one and a large one, with the former mounted on top of the latter. The small balloon was composed of a 0.5 mil Mylar and dacron laminate called S-12 with a volume of 250,000 cubic feet. The main balloon consisted of a 0.3 mil Mylar and dacron material known as S-11 with a volume of 5,250,000 cubic feet. The two balloons were connected by a 2-1/2 foot metal tube, 3 feet in diameter, attached to a 3-foot hole in each balloon.


The launch balloon was designed to hold enough helium to lift the payload to altitude. In preparation for the flight the launch balloon was inflated while connected to the main balloon which remained in its shipping box. Once the smaller balloon was full, it was attached to a cable and allowed to ascend slowly, lifting the main balloon (which was snugly wrapped in a plastic sheath), until the entire system stood erect above the telescope. Wrapping the uninflated main balloon prevented its ''sailing'' and sweeping the payload out horizontally. Immediately before launch the entire system towered over 600-feet tall. At launch an explosive charge released the restraining cable and the balloon took-off gently, without sway or rotation. Once the balloon left the ground, the protective sheath was ripped from the main balloon. As the balloon ascended the change in atmospheric pressure with altitude induced a flow of gas from the launch balloon into the main balloon. At 30.000 feet both were fully inflated.

Althought Stratoscope II carried two cargo parachutes for emergency landing if necessary, the common procedure once the mission was completed was to lower the telescope gently to earth with the help of the balloon itself. At dawn, an aircraft approached the balloon and sent a command to valve-off helium establishing a rate of descent of about 600 feet per minute. The balloon was carefully ''stepped down" to around 5000 feet, and held at this altitude until rendezvous was established with an helicopter to which command was transferred; it then eased the balloon down close to the ground (avoiding cities, electric lines, railways. etc.), until it drifted over an open area, whereupon the telescope was landed. Upon cantact with the ground an explosive bolt was fired, releasing the balloon to prevent it dragging the instrument. Freed of its load, the balloon ascended, to be immediately deflated by the ignition of a large squib at its apex, thus preventing it from continuing an uncontrolled free flight.

Details of the balloon flight

Balloon launched on: 7/2/1962
Launch site: Hope, Arkansas, US  
Balloon launched by: Vitro Laboratories
Balloon manufacturer/size/composition: Zero Pressure Balloon Schjeldahl - Tandem system -
End of flight (L for landing time, W for last contact, otherwise termination time): 7/2/1962
Balloon flight duration (F: time at float only, otherwise total flight time in d:days / h:hours or m:minutes - ): 25 m
Landing site: Balloon failure at 18kft. Payload and balloon recovered near Hope, Arkansas, US
Payload weight: 9.100 pds
Overall weight: 14.000 pds

This was the fourth test flight of the Princeton University Observatory's Stratoscope II system. It was launched on 2 July, 1962 from the local airport in Hope, Arkansas. However the flight ended prematurely after approximately 25 minutes of flight when cut-down squibs fired, releasing the parachutes and payloads from the balloon. The system carried a dummy payload, of about 9,100 pounds, including ballast, and had a gross lift of about 14,000 pounds.

The accidental activation of the cut-down squibs was believed to be due either to a malfunction of the balloon-borne control package or to a spurious signal. To observers on the ground, the system appeared to be functioning well; the additional payload weight apparently had no effect on performance. The system had reached an altitude of between 18,000 and 20,000 feet at the time of cut-down. At this height, the system was under its greatest amount of stress. The balloon was not destroyed, however, and probably turned upside down, continuing to rise to about 60,000 or 70,000 feet before bursting. It was recovered about 13 miles from the launch area. The dummy payload was also recovered.

External references

Images of the mission

The launch balloon of the dual-balloon Stratoscope II system, during inflation at Hope, Arkansas, before its fourth test flight on 2 July. (Image: National Science Foundation)        

If you consider this website interesting or useful, you can help me to keep it up and running with a small donation to cover the operational costs. Just the equivalent of the price of a cup of coffee helps a lot.