Purpose of the flight and payload description

This balloon mission was part of the qualification and testing phase of the parachute system for ExoMars (Exobiology on Mars) mission, an astrobiology programme by the European Space Agency (ESA) and the Russian space agency Roscosmos. The goals of ExoMars are to search for signs of past life on Mars, investigate how the Martian water and geochemical environment varies, investigate atmospheric trace gases and their sources and by doing so demonstrate the technologies for a future Mars sample-return mission. The first part of the programme was a mission launched in 2016 that placed the Trace Gas Orbiter into Mars orbit and released the Schiaparelli EDM lander. The orbiter is operational but the lander crashed on the planet's surface.

The second part of the programme was planned to launch in July 2020, when the Kazachok lander would have delivered the Rosalind Franklin rover on the surface, supporting a science mission that was expected to last into 2022 or beyond. The descent module requires two main parachutes -each with its own pilot chute for extraction- to help slow it down as it plunges through the martian atmosphere. The 15 meters-wide first stage main parachute will open while the descent module is still travelling at supersonic speeds, and the 35 meters-wide second stage main parachute is deployed once at subsonic speeds. Following separation of the parachutes, the speed must be suitable for the braking engines to safely deliver the landing platform and the rover onto the surface of Mars.

To test the performance of the parachutes before the flight, the UK-based company Vorticity Systems was selected as technical consultant under contract with Thales Alenia Space. A special capsule was built by the firm to perform the drop tests of the parachutes, first from low altitude using an helicopter and then from high altitude using a stratospheric balloon. These missions allowed to test the parachutes and deployment sequence with the same gravitational acceleration and atmospheric density as they will experience on Mars.

After the firsts series was completed in 2019 some anomalies were found on the descending system. As a result on March 2020, it was announced that the second mission was being delayed to 2022 as a result of the problems with the parachutes, which could not be resolved in time for the launch window. After studying the problem and some modifications, a new series of parachute tests were needed which were performed in Oregon during 2020 and from Sweden in 2021.

For the 2021 round of tests, a new bag design was applied and a revised approach to folding to avoid line-twisting upon extraction: the parachute had originally been packed inside the bag around the central mortar that contains the pilot chute, such that upon extraction it unwrapped in a 360º fashion. Folding the band of the parachute in two layers, so that it first unfolds in one direction and then 180º in the other direction, proved to reduce the tendency of the canopy to experience friction incurred by wrapping around the mortar.

Also a slightly smaller sized pilot chute (3.7 m compared with 4.5 m previously) was also implemented, aimed at reducing the energy -and therefore the friction- generated upon extraction of the second main parachute from its bag.

Video footage of parachute deployment from onboard cameras

Details of the balloon flight

Balloon launched on: 6/24/2021 at 3:32 utc
Launch site: European Space Range, Kiruna, Sweden  
Balloon launched by: Swedish Space Corporation (SSC)
Balloon manufacturer/size/composition: Zero Pressure Balloon  
Flight identification number: SSC Flt Nº 658
End of flight (L for landing time, W for last contact, otherwise termination time): 6/24/2021
Balloon flight duration (F: time at float only, otherwise total flight time in d:days / h:hours or m:minutes - ): ~ 3 h

This was the first test of the 2021 series involving a 15-meter parachute made by Airborne Systems, a U.S. company that produced the parachute for NASA's Perseverance Mars rover. This parachute will serve to slow down the entry of ExoMars while descending at supersonic speeds.

The balloon was launched by dynamic method from ESRANGE launch pad on June 24, 2021 at 3:32 utc. After a nominal ascent and once the balloon reached the expected area the drop was conducted with the release of the capsule from the balloon at 6:45 utc. In the test, the first main parachute performed perfectly.

External references

Images of the mission

         

If you consider that this website is interesting or useful, you can help to keep it running with just the equivalent of the price of a cup of coffee. Click on the button on the right for more information.



15719